Dynamic Pathways for Viral Capsid Assembly

Michael F. Hagan and David Chandler
Department of Chemistry, University of California, Berkeley, California

ABSTRACT We develop a class of models with which we simulate the assembly of particles into T1 capsidlike objects using Newtonian dynamics. By simulating assembly for many different values of system parameters, we vary the forces that drive assembly. For some ranges of parameters, assembly is facile; for others, assembly is dynamically frustrated by kinetic traps corresponding to malformed or incompletely formed capsids. Our simulations sample many independent trajectories at various capsomer concentrations, allowing for statistically meaningful conclusions. Depending on subunit (i.e., capsomer) geometries, successful assembly proceeds by several mechanisms involving binding of intermediates of various sizes. We discuss the relationship between these mechanisms and experimental evaluations of capsid assembly processes.

INTRODUCTION

This article is devoted to introducing a simple class of capsomer models, and demonstrating that Newtonian dynamics of these models exhibit spontaneous assembly into 60-unit icosahedral capsids, depending upon conditions (i.e., particle concentration and force-field parameters). We believe it is the first report of statistically meaningful simulations of capsid assembly that follow from unbiased dynamics obeying time-reversal symmetry and detailed balance.

The formation of viral capsids is a marvel of natural engineering and design. A large number (from 60 to thousands) of protein subunits assemble into complete, reproducible structures under a variety of conditions while avoiding kinetic and thermodynamic traps. Understanding the features of capsid components that enable such robust assembly could be important for the development of synthetic supranano assemblies. In addition, this knowledge is essential for the development of antiviral drugs that inhibit capsid assembly or disassembly and could focus efforts to direct the making of highly specific drug delivery vehicles. These goals necessitate the ability to manipulate when and where capsids assemble and disassemble. Thus, we seek to determine what externally or internally controlled factors promote or alleviate dynamic frustration in the capsid assembly process. Although many viruses assemble with the aid of nucleic acids and scaffolding proteins, the first step toward this objective is to understand the inherent ability of subunit-subunit interactions to direct spontaneous assembly.

The equilibrium properties of viral capsids have been the subject of insightful theoretical investigations (e.g., 1–6) and the assembly process has been investigated in a number of experiments (e.g., 7–15), yet this process is still poorly understood for many viruses (e.g., 16). Assembly is difficult to analyze experimentally because most intermediates are transient. With single molecule techniques, it is now possible to directly probe intermediate structures. Each intermediate, however, is a member of a large ensemble of structures and pathways that comprise the overall assembly process. Formation of an intermediate requires collective binding events that are regulated by a tightly balanced competition of forces between individual subunits. It is difficult, with experiments alone, to parse these interactions for the factors that are critical to the assembly process. Thus, it is useful to have complementary computational models in which the effects of different interactions can be isolated and monitored.

Studying assembly through computation is challenging because short-range subunit-subunit properties regulate the formation of overall structure. Binding and unbinding rates of individual subunits are orders-of-magnitude faster than the overall assembly times. Furthermore, these rates are controlled by interactions defined on atomic lengths, which are three orders-of-magnitude smaller than typical capsid sizes. Prior computational studies provide valuable insights that we build upon; in particular, Zlotnick pioneered a rate-equation description of assembly (17) and Berger and co-workers developed particle-based methods (18). Earlier studies, although an important foundation for our work, are limited in that they have been based upon preconceived pathways of assembly (17,19–25), or dynamics that did not obey detailed balance (18,26–28), or dynamics that was anecdotal (26,29–31). These approaches can be useful and physical justifications for them can be made. Nevertheless, we seek to avoid these limitations to understand the nature of possible kinetic traps and the extent of ensembles of successful assembly events. In the next section, we present our class of models for capsid subunits. We evaluate the thermodynamic properties of this model in Thermodynamics of Capsid Assembly, and then discuss the results of dynamical simulations in Kinetics of Capsid Assembly. By simulating assembly for many different values of system parameters, we vary the strength of the forces that either drive or thwart assembly. We identify regions of parameter space in which two forms of kinetic traps
prevail and we elucidate processes by which dynamic frustration is avoided in other regions of parameter space.

MODEL

Capsomers

Capsid proteins typically have several hundred residues that fold into well-defined shapes with specific interactions that lead to attractions between complementary sides of nearby subunits. We imagine that by integrating over degrees of freedom, such as atomic coordinates, as capsid proteins fluctuate about their native states, one can arrive at a model in which subunits have excluded volume and asymmetric pairwise bonding interactions between complementary sides. Several models have been presented in which asymmetric subunits, the capsomers, are represented by conglomerates of spherically symmetric particles with varying interaction strengths (6,26,30,31). These approaches can describe complex excluded volume shapes. The approach we take here, however, is simpler, and motivated by the modeling described in Schwartz et al. (29). Specifically, we use only a single spherical excluded volume per capsomer, and we use internal bond vectors to capture the effects of protein shape and complementarity. Our objective is to determine if, and under what conditions, such simple ingredients are sufficient to drive assembly.

In the space of simplified models that account for only space-filling size and orientation-specific bonding, there is an infinity of possibilities that will have clusters of 60 units with icosahedral symmetry as a ground state. Here, we consider three types in detail: B_3, B_4, and B_5, which contain three, four, and five internal capsomer bond vectors, respectively. These bond vectors, \(\mathbf{b}_{i}^{(a)} \), are pictured in Fig. 1. The index \(a \) goes from 1 to \(n_a \), where \(n_a = 3 \) for the B_3 model, \(n_a = 4 \) for the B_4 model, and so forth, and the index \(i \) goes from 1 to \(N \), where \(N \) is the number of capsomers in the system. The vector \(\mathbf{r}_{i}^{(a)} = \mathbf{R}_i + \mathbf{b}_{i}^{(a)} \) is the position of interaction site \(a \) on capsomer \(i \), where \(\mathbf{R}_i \) is the center of capsomer \(i \). All bond vectors have the same magnitude, \(b \). Within a capsomer frame of reference, the bond vectors are fixed rigidly. They move only because the capsomer translates and rotates. This is not to say that proteins do not fluctuate. Those fluctuations, we imagine, have been averaged over, i.e., integrated out of the model at the level we consider.

The net potential energy of interaction among \(N \) capsomers, \(U(1, 2, \ldots, N) \), is taken to be pair-decomposable,

\[
U(1, 2, \ldots, N) = \sum_{i<j=1}^{N} u(i, j),
\]

where \(u(i, j) \) depends upon the bond vectors and centers of capsomers \(i \) and \(j \). The particular form for this pair potential depends upon which of the three models, B_3, B_4, or B_5 is under consideration. In each case, however, the potential is constructed so that the lowest energy configurations coincide with separate icosahedral clusters of 60 identical capsomers. These clusters represent capsids with triangulation number \(T \) of one (2), as discussed below.

In each model, bond vectors or interaction sites have complementary counterparts. For example, in the B_3 model, interaction site pairs \((\alpha, \beta) = (1, 2) \) and \((3, 3) \) are the primary complementary pairs. This means that a favorable potential energy of interaction between a pair \(i \) and \(j \) of B_3 capsomers has two ways of occurring:

1. Interaction site 1 on one capsomer overlaps with interaction site 2 on the other capsomer, and the respective bond vectors \(\mathbf{b}_{i}^{(1)} \) and \(\mathbf{b}_{j}^{(2)} \) are nearly antiparallel.

2. Interaction site 3 on one capsomer overlaps with interaction site 3 on the other, and \(\mathbf{b}_{i}^{(3)} \) and \(\mathbf{b}_{j}^{(3)} \) are nearly antiparallel.

The only favorable (i.e., attractive) interactions are those associated with primary complementary pairs.

In addition, there are secondary complementary pairs. For example, in the B_3 model, with primary complementary pair (1, 2), there is the secondary pair (3, 3). This means that a favorable interaction affected by the primary complementary pair (1, 2), as described in the previous paragraph, also requires that \(\mathbf{b}_{i}^{(3)} \) and \(\mathbf{b}_{j}^{(3)} \) are nearly coplanar. Similarly, for the primary complementary pair (3, 3), the secondary pair is either (1, 2) or (2, 1), meaning that if \(\mathbf{b}_{i}^{(3)} \) and \(\mathbf{b}_{j}^{(3)} \) are antiparallel, favorable interactions result only if \(\mathbf{b}_{i}^{(1)} \) and \(\mathbf{b}_{j}^{(2)} \) are nearly coplanar and \(\mathbf{b}_{i}^{(2)} \) and \(\mathbf{b}_{j}^{(1)} \) are nearly coplanar. Of course, because the capsomers are rigid bodies, \(\mathbf{b}_{i}^{(1)} \) and \(\mathbf{b}_{j}^{(2)} \) being coplanar implies that \(\mathbf{b}_{i}^{(2)} \) and \(\mathbf{b}_{j}^{(1)} \) are coplanar. The primary and secondary pairs for each of the models are listed in the entrees to Table 1. Local

FIGURE 1 Geometry of bond vectors in the B_3, B_4, and B_5 capsomer models. The center of capsomer \(i \) is at \(\mathbf{R}_i \). The angles between indicated bond vectors within a capsomer are specified in degrees. They do not sum to 360° = 2π because the bond vectors are not coplanar.
TABLE 1 Primary and secondary complementary pairs and associated angles for the three capsomer models

<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
<th>Column 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>β</td>
<td>γ</td>
</tr>
<tr>
<td>ε</td>
<td>η</td>
<td>ν</td>
</tr>
<tr>
<td>B₃</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>B₄</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>B₅</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\cos(\theta^{(αβ)}_l) = -\frac{\mathbf{b}^{(α)}_l \cdot \mathbf{b}^{(β)}_l}{\mathbf{b}^{(α)}_l \cdot \mathbf{b}^{(α)}_l} \mathbf{R}_l = \mathbf{R}_s - \mathbf{R}_r.
\]

\[
\cos(\phi^{(αβ,1)}_l) = \frac{(\mathbf{b}^{(γ)}_l \times \mathbf{R}_r) \cdot (\mathbf{R}_s \times \mathbf{b}^{(ρ)}_l)}{|\mathbf{b}^{(γ)}_l \times \mathbf{R}_r| |\mathbf{R}_s \times \mathbf{b}^{(ρ)}_l|}.
\]

\[
\cos(\phi^{(αβ,2)}_l) = \frac{(\mathbf{b}^{(γ)}_l \times \mathbf{R}_r) \cdot (\mathbf{R}_s \times \mathbf{b}^{(ρ)}_l)}{|\mathbf{b}^{(γ)}_l \times \mathbf{R}_r| |\mathbf{R}_s \times \mathbf{b}^{(ρ)}_l|}.
\]

Bonding associated with these complementarities and resulting capsid structures are illustrated in Fig. 2. In creating these pictures, it is imagined that excluded volume interactions prohibit an interaction site from participating simultaneously in more than one favorable complementary interaction, as is the case for the models we describe.

The dependence of subunit-subunit interactions on the orientation of primary and secondary pairs incorporates the fact that there is a driving force for subunits to align complementary regions to maximize the contact between complementary residues. Capsid curvature in the minimum energy orientation arises from the fact that the angles between bond vectors on a given subunit do not sum to 2π.

Pair potential

The potential energy of interaction between two capsomers, say 1 and 2, is taken to have a spherically symmetric repulsive part, \(u_0(|\mathbf{R}_2 - \mathbf{R}_1|)\), and an attractive part that depends upon both \(\mathbf{R}_2 - \mathbf{R}_1\) and the bond vectors associated with the two capsomers,

\[
u(1, 2) = u_0(|\mathbf{R}_2 - \mathbf{R}_1|) + u_1(\mathbf{R}_2 - \mathbf{R}_1, \{\mathbf{b}^{(α)}_1\}, \{\mathbf{b}^{(β)}_1\}).
\]

For the repulsion, we have chosen the Weeks-Chandler-Andersen (32) potential,

\[
u_0(\mathbf{R}) = 4\epsilon\left[\frac{(\sigma/\mathbf{R})^{12}}{(r + \frac{1}{6}\sigma)^6} - \left(\frac{\sigma}{r + \frac{1}{6}\sigma}\right)^6\right], \quad R < 2^{1/6}\sigma
\]

\[
u_0(\mathbf{R}) = 4\epsilon\left[\frac{(\sigma/\mathbf{R})^{12}}{(r + \frac{1}{6}\sigma)^6} - \left(\frac{\sigma}{r + \frac{1}{6}\sigma}\right)^6\right] = 0, \quad R \geq 2^{1/6}\sigma.
\]

For the attractions we have chosen

\[
u_1(\mathbf{R}_2 - \mathbf{R}_1, \{\mathbf{b}^{(α)}_2\}, \{\mathbf{b}^{(β)}_1\}) = \sum_{α} u_{αβ}(|\mathbf{r}^{(α)}_2 - \mathbf{r}^{(β)}_1|) s_{αβ}(1, 2),
\]

where the primed sum is over primary complementary pairs,

\[
u_{αβ}(\mathbf{r}) = 4\epsilon_{αβ}\left[\left(\frac{\sigma}{r + \frac{1}{6}\sigma}\right)^6 - \left(\frac{\sigma}{r + \frac{1}{6}\sigma}\right)^{12}\right] + \left(\frac{\sigma}{r_c}\right)^6, \quad r + 2^{1/6}\sigma < r_c
\]

\[
u_{αβ}(\mathbf{r}) = 0, \quad r + 2^{1/6}\sigma \geq r_c.
\]

which has its minimum value, \(-\epsilon_{αβ}\), when the separation of complementary pair interaction sites is zero, and \(s_{αβ}(1, 2)\) is the switching function, given by

![FIGURE 2](attachment:image.png)
for models B₃ and B₅, and by
\[
s_{ab}(1, 2) = \frac{1}{4} \left[\cos(\pi \theta_{12}^{(ab)}) / \theta_m + 1 \right] \\
\times \left[\cos(\pi \phi_{12}^{(ab,1)}) / \phi_m + 1 \right] \\
\times \left[\cos(\pi \phi_{12}^{(ab,2)}) / \phi_m + 1 \right] \quad (7)
\]
for model B₆. The angle variables used in these expressions are defined in Table 1. Notice from that table, specifying a specific primary pair of complementary bonds prescribes specific corresponding secondary pairs. The switching function goes smoothly from 1 to 0 as the angle variables \(\theta_{12}^{(ab)}, \phi_{12}^{(ab,1)}, \text{and} \ \phi_{12}^{(ab,2)}\) change from 0 to \(\theta_m, \phi_m, \text{and} \ \phi_m\), respectively. Increase of these maximum angles \(\theta_m\) and \(\phi_m\) increases the configuration space in which two nearby subunits attract each other, but also weakens the driving force toward the minimum energy orientation. The forms of the interaction potentials are chosen to give strong, short-ranged, orientation-dependent interactions. Any other aspects of potential interactions that might typify viral protein-protein interactions are ignored.

Relation of model capsids to actual viral capsids

Capsomer models of the types we consider could be derived from capsid crystal structures by placing the center of a model capsomer at the center of mass of each viral subunit, and then assigning bonds between each pair of strongly interacting subunits. The resulting bonds dictate the orientations of bond vectors in the model subunits, and the protein-protein binding free energy dictates the model interaction strengths, \(\alpha_i\). The designs considered in this work were derived in this way, but from the three different lattices shown in Fig. 3, rather than from particular crystal structures. These lattices are tiled with simplified proteins, which are shaped as triangles, diamonds, and trapezoids, for B₃, B₄, and B₅, respectively. Pairs of schematic proteins with all or part of an edge in common, experience favorable interactions. The B₄ lattice, which is shown inscribed over the crystal structure of canine parvovirus, was taken from the Viper database (33). The B₅ lattice is consistent with Fig. 3 of Xie and Chapman (34), and, of the three considered herein, might be the most accurate representation of T1 viruses. The B₃ design, which is similar to the model considered in Schwartz et al. (29), is less consistent with viral capsid crystal structures. Although B₄ and B₅ tile an icosahedron, B₃ tiles its dual, a dodecahedron. Each lattice represents a T1 virus to the extent that these capsids have 60 identical proteins with icosahedral symmetry.

We consider the dynamics of three model capsomers because our objective is to determine the conditions for such simple models that lead to assembly. Given the different connectivities of the three different models, it is not surprising that they each assemble by different pathways, as we will see shortly. Despite the differences, however, we will also see that the resulting assembly kinetics are qualitatively similar for the three classes of models.

Dynamical simulations

Dynamical trajectories were calculated using Brownian dynamics, in which particle motions are calculated from Newton’s laws with forces and torques arising from subunit-subunit interactions as well as drag and a random buffeting force due to the implicit solvent. We use the coupled equations of motion
\[
\dot{R}_i = \gamma^{-1} F_i + \delta F_i, \\
\omega_i = \gamma_i^{-1} \tau_i + \delta \tau_i, \quad (8)
\]
where \(\omega\) is the angular velocity, the force is given by
\[
F_i = -\partial U / \partial R_i, \quad (9)
\]
and the torque is given by
\[
\tau_i = -\sum_a b_i^{(a)} \times (\partial U / \partial b_i^{(a)}), \quad (10)
\]
while \(\delta F_i\) and \(\delta \tau_i\) are a random force and torque, with covariances given by
\[
\langle \delta F_i(t) \delta F_i(t') \rangle = 1 \delta(t - t') \delta_i 2 k_B T / \gamma \\
\langle \delta \tau_i(t) \delta \tau_i(t') \rangle = 1 \delta(t - t') \delta_i 2 k_B T / \gamma_i, \quad (11)
\]
where 1 is the identity matrix. The friction coefficients for translation and rotation are \(\gamma\) and \(\gamma_i\), respectively, and \(k_B T\) is the thermal energy.

In our implementations of these equations, rigid body rotations were performed with quaternions (35) and rotational and translational displacements were calculated using the second-order stochastic Runge-Kutta method (36,37). as described in Appendix A. Periodic boundary conditions were
used to simulate a bulk system. We employed reduced units in which the particle diameter $\sigma = 1$, $k_B T$ is the unit of energy, and time is scaled by $t_0 = \gamma \sigma^2/(48 k_B T)$. Each trajectory considered $N = 1000$ subunits and ran for 10^8 steps, usually with a time step of 0.006. The values of all parameters used in this work are documented in Table 2. If units of length, σ, and temperature, T, are chosen to be $\sigma = 2 \text{nm}$ and $T = 300 \text{K}$, the final observation time after 10^8 steps is $t_{\text{obs}} = 227.5 \text{ ms}$; subunit concentrations, C_0, range from 2.08×10^{-4} to 0.156 mol/L; and binding energies, e_b, range from 5.4 to 13.2 kcal/mol. Because accessible simulation times are lower than those considered in typical in vitro experiments (approximately minutes), we considered simulated concentrations that are mostly higher than typical experimental values (~ 1–$100 \mu\text{mol/L}$). But as we will soon see, the variation of simulated assembly kinetics with concentration and observation time suggests that our conclusions would be similar for experimental times and concentrations.

THERMODYNAMICS OF CAPSID ASSEMBLY

The equilibrium concentrations of free subunits (monomers) and capsid intermediates can be related by the law of mass action (38)

$$\rho_n \sigma^3 = (\rho \sigma^3)^n \exp(-\beta \Delta G_n),$$

where ρ_n is the number density of an intermediate with n subunits, σ is the molecular dimension, $\beta = 1/k_B T$ is the inverse of the thermal energy, and ΔG_n is the driving force to form an intermediate of size n. The driving force for assembly comes from the fact that subunits experience a favorable energy, e_b, upon binding; but subunits also face an entropic penalty, which depends on the number of bonds and the local bonding network.

The free energy for making a single bond to form a dimer can be determined by calculating the ratio of the partition functions for two bound subunits and two free subunits (39,40) as

$$q_d/q_i^2 = \frac{1}{8\pi} \int d\mathbf{R}_1 \int d\mathbf{R}_2 \exp[-\beta u(\mathbf{R}_1, \mathbf{R}_2, \{\mathbf{b}_1^{(m)}\}, \{\mathbf{b}_2^{(m)}\})] H(1, 2),$$

where u is defined in Eq. 2; Ω_2 describes the Euler angles of subunit 2, which specify the set of bond vector orientations, $\{\mathbf{b}_2\}$; and $H(1, 2)$ is unity when $u(\mathbf{R}_1, \mathbf{R}_2, \{\mathbf{b}_1^{(m)}\}, \{\mathbf{b}_2^{(m)}\}) < -2k_B T$, and zero otherwise. In other words, we define two capsomers as bound if their potential energy of interaction is $< -2k_B T$. The free subunits are taken to be at a standard state with unit density and free rotation, and the coordinate system is centered on \mathbf{R}_1.

Expansion of $u(1, 2)$ to quadratic order in each coordinate about the minimum in the potential gives

$$\Delta G_2 = -k_B T \ln q_d/q_i^2 = -e_b - T S_b,$$

with

$$s_b/k_B \approx -\frac{3}{2} \left(\frac{2\pi T e_b^3}{\nu_0} \right)^{1/3} \frac{1}{(\nu_0)^{1/3}} \left(\frac{2\pi T e_b^3}{\nu_0} \right)^{2/3},$$

where the two terms represent translational and rotational entropy, respectively. This result is compared to binding free energies calculated with Monte Carlo simulations in Fig. 4.

Although there are many possible capsid structures consistent with most larger values of n, there is only one structure consistent with a complete capsid, which has $n = N_c$ subunits ($N_c = 60$ for the capsids studied in this work). The fact that misformed capsids and intermediates are generally not observed implies that ΔG_n is sharply peaked at $n = N_c$; defects that lead to larger or smaller capsids are unfavorable. There is a threshold density, ρ_{cc}, at which the fraction of subunits in capsids becomes significant (34,41–43)

$$\ln \rho_{\text{cc}} \sigma^3 \approx \beta \Delta G_{\text{cc}}/N_c.$$

By analogy with Eq. 14, the free energy of a complete capsid can be written as

FIGURE 4 Binding free energies for dimerization calculated from Eqs. 14 and 15 (line) and Monte Carlo simulations (points). Free energies are with reference to a standard state with volume fraction of 1 and free rotational motion, and the maximum angle parameters, defined in Eq. 6, are $\phi_m = \phi_m = 0.5$.

TABLE 2 Parameter values used for dynamical simulations in this work, where σ is the unit of length, $k_B T$ is the thermal energy, γ is the translational friction constant (Eq. 8), and $t_0 = \gamma \sigma^2/(48 k_B T)$ is the unit time

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\epsilon/k_B T$</td>
<td>1</td>
<td>WCA energy parameter, Eq. 3.</td>
</tr>
<tr>
<td>$e_b/k_B T$</td>
<td>9–22</td>
<td>Attractive energy strength, Eq. 5.</td>
</tr>
<tr>
<td>b/σ</td>
<td>2–500</td>
<td>Bond vector length.</td>
</tr>
<tr>
<td>α/σ^2</td>
<td>0.4</td>
<td>Rotational friction coefficient, Eq. 8.</td>
</tr>
<tr>
<td>θ_α (rad)</td>
<td>3.14</td>
<td>Maximum dihedral angle, Eq. 6.</td>
</tr>
<tr>
<td>L_{box}</td>
<td>11–100</td>
<td>Simulation box size.</td>
</tr>
<tr>
<td>N</td>
<td>1000</td>
<td>Number of subunits.</td>
</tr>
<tr>
<td>$C_0 = N \sigma^3 L^{-3}$</td>
<td>0.001–0.75</td>
<td>Concentration of subunits.</td>
</tr>
<tr>
<td>r_c/σ</td>
<td>2.5</td>
<td>Attractive energy cutoff distance.</td>
</tr>
<tr>
<td>δt_0</td>
<td>0.006</td>
<td>Timestep.</td>
</tr>
<tr>
<td>t_{obs}/t_0</td>
<td>6×10^5</td>
<td>Final observation time, 10^8 steps.</td>
</tr>
</tbody>
</table>
\[\Delta G_{N_i} = -N_i n_b \varepsilon_b / 2 - T(N_i - 1) s_b(n_b), \]

(17)

where \(s_b(n_b) \) is the entropy penalty for a subunit in a complete capsid, where each subunit has \(n_b \) bonds. If we neglect the dependence of the entropy penalty on the number of bonds (i.e., assume \(s_b(n_b) \approx s_b \)), we can use Eqs. 15–17 to calculate \(\rho_{cc} \). Values of \(\rho_{cc} \) for capsid design \(B_4 \) (\(n_b = 3 \)) with \(\phi_m = \pi \) (the value used for all dynamical simulations with this work) are shown in Fig. 5, and are compared to kinetic assembly results in Fig. 7.

KINETICS OF CAPSID ASSEMBLY

Capsid formation rate curves are sigmoidal

We have considered capsid assembly dynamics for design \(B_4 \) (see Figs. 1 and 2) over ranges of subunit concentrations, \(C_0 \) (reported in dimensionless units, \(C_0 = N\sigma^2 / L^3 \)); binding energies, \(\varepsilon_b \); and maximum binding angles \(\theta_m \). The results we present use \(\phi_m = \pi \), the effect of varying \(\phi_m \) is similar to, but less dramatic than that of varying \(\theta_m \). Dynamics of different capsid designs are discussed below.

The fraction of subunits in completed capsids, \(f_c \), is shown as a function of time for several binding energies in Fig. 6a. In all cases for which significant assembly occurred, the rate of capsid formation has a roughly sigmoidal shape. This is a general feature of assembly reactions (20) that can be understood as follows. There is an initial lag phase during which capsid intermediates form and progress through the assembly cascade, followed by a rapid growth phase during which these intermediates assemble into complete capsids. Finally, growth slows when monomers (free subunits) are depleted and the remaining capsid intermediates are unable to bind with each other.

Final capsid yields are nonmonotonic with respect to parameter values, but high yields are possible

The fraction of subunits in complete capsids, \(f_c \), at the final observation time, \(t = 6 \times 10^3 \), is shown in Fig. 6. As \(C_0, \varepsilon_b, \) or \(\theta_m \) increase, intermediates form and grow more rapidly, and thus capsid yields increase to as high as 90%, meaning 15 of the 16 possible capsids were completed. One of the primary results of this study is that a particle model that does not include details such as heterogeneous nucleation or conformational changes can predict such high capsid yields.

Although capsids form more quickly as parameter values are increased, saturation of growth also occurs sooner and capsid yields are nonmonotonic in each parameter. The sensitivity of capsid yields to parameters seen in Fig. 6 is further illustrated with a kinetic phase diagram in Fig. 7. It demonstrates the coupled dependencies of capsid yields on system parameters. Phases are partitioned according to whether or not there is significant assembly, arbitrarily chosen as \(f_c \geq 30\% \).

The nonmonotonic variation of capsid yields with parameter values arises due to competition between faster capsid growth and kinetic traps

The initial steps in the assembly cascade result in the formation of fewer bonds than later steps. If the attractive energy of these bonds is not sufficient to overcome entropic loss, the initial steps are uphill on a free energy barrier and hence, are slow. For parameter sets that are near \(\rho_{cc} \) (see Fig. 5), where half of the subunits are in complete capsids at equilibrium, the fact that a complete capsid has many more bonds than initial assembly products indicates that the free energy barrier must be many times the thermal energy, \(k_B T \). Significant assembly, therefore, does not occur within the finite assembly times we consider until parameter values are much higher than the thermodynamic critical values, and we identify a kinetic lower critical surface in Fig. 7 that bounds the regions with significant assembly from below and to the left. We consider results at finite observation times because capsid assembly reactions are limited in vivo by proteolysis times and in vitro by experimental observation times.

Increasing parameters increases the overall rate of capsid growth: higher subunit concentrations, \(C_0 \), result in more frequent subunit collisions, higher values of \(\theta_m \) increase the likelihood of binding upon a collision, and higher values of the binding energy, \(\varepsilon_b \), decrease the rate of the reverse reaction (subunit unbinding). As parameter values cross the lower critical surface, faster capsid growth leads to significant capsid yields, as seen in Fig. 6. At even higher values, however, assembly becomes frustrated by two kinetic traps (see Fig. 8) and we identify an upper critical surface in Fig. 7 to the top and right of the regions in which assembly is kinetically accessible. Because of these kinetic traps, assembly only occurs at subunit-subunit binding energies that are much smaller than values calculated from atomistic potentials in Reddy et al. (21) (see Table 1 therein). When the binding entropy (see Eq. 15) is included, however, the resulting free energies are consistent with association constants fit to assembly experiments with Hepatitis B capsids in Ceres and Zlotnick (44).
We present results at three observation times to show how the distance between assembly boundaries expands in all directions as time increases. The rough boundary of the kinetically accessible region in Fig. 7 is a measure of the statistical uncertainty that results because each data point describes a single stochastic trajectory. For trajectories run with different random number seeds at a given set of parameter values, the final number of complete capsids typically did not vary by more than one capsid; however, variations during the rapid growth phase were larger.

The kinetic trap depicted in Fig. 8 arises when progress through initial assembly steps is too rapid, allowing so many capsids to initiate that the pool of monomers and small intermediates becomes depleted before a significant number of capsids are completed. If the remaining partial capsids have noncomplementary geometries, further binding can

FIGURE 6 Examples of the influence of system parameters on assembly dynamics for design B₃. (a) The fraction of complete capsids versus time, \(f_c \), is shown for \(\theta_m = 0.5 \) and \(C_0 = N_{s}/L^3 = 0.11 \) at varying \(\epsilon_b \) illustrating the sigmoidal shape of capsid yields. Note that variations of \(f_c \) are in discrete units of 0.06 because there are 1000 subunits and each complete capsid has 60 subunits. Variation of the final mass fraction of complete capsids, \(f_c \), is shown in panels b–d: (b) variation with \(C_0 = 0.11 \) and \(\theta_m = 0.5 \), (c) variation with \(C_0 \) at several values of \(\theta_m \) with \(\epsilon_b = 0.5 \), and (d) variation with \(\theta_m \) for several values of \(\epsilon_b \) and \(C_0 = 0.11 \). Note that \(\epsilon_b \) does not denote the free energy to bind; there is a significant entropy penalty, calculated in Eq. 15.

FIGURE 7 Changing model parameters reveals the kinetic phase diagram for design B₃. Solid points denote parameter values for which 30% of subunits are in complete capsids (\(f_c \approx 30\% \)) by the observation time, \(t_{\text{obs}} \), open points indicate parameter values for which \(f_c < 30\% \), and the dashed lines indicate the location of the thermodynamic critical surface, calculated with Eq. 16. The first, second, and third columns correspond to observation time \(t_{\text{obs}} = 1.2 \times 10^5, 8 \times 10^4, \) and \(6 \times 10^5 \), respectively. The top row (a) shows cross sections through \(C_0 \) and \(\epsilon_b \) with \(\theta_m = 0.5 \). The second and third row show cross sections through \(\theta_m \) and \(\epsilon_b \) with (b) \(C_0 = 0.11 \) and (c) \(C_0 = 0.037 \). In each case the region covered by solid points roughly defines a cross section of parameter space within which assembly is kinetically possible. Simulation snapshots corresponding to the \(\bigcirc \) in the right hand panel in row b and the \(\triangle \) in the right-hand panel in row a are shown in Fig. 8.
only proceed upon disassembly. This kinetic trap has been seen in experiments (12) and predicted theoretically (17); this theory, however, assumes that only monomers can add to partial capsids. As discussed below, binding of capsid intermediates is an important mode of assembly and growth does not become frustrated until only intermediates with noncomplementary geometries remain.

The kinetic trap just described may not limit assembly in vivo, where there is a continual supply of new capsid proteins. Subunit bonding in configurations not consistent with a complete capsid (misbonding), however, can lead to a kinetic trap that could frustrate assembly even with an unlimited supply of subunits. Note that a rate equation approach that assumes assembly pathways (17) cannot identify this trap.

It is not surprising that misbonding occurs more frequently as \(\theta_m \) increases, since there is a smaller driving force toward the minimum energy orientation. But, as the exploratory trajectories of Berger and co-workers (29) begin to show, increasing concentration and binding energy can stabilize subunits with strained bonds, and the higher rate of capsule growth under these conditions can cause misbonded subunits to become trapped in a growing capsule by further addition of subunits. Because so many assembly pathways that do not lead to complete capsules are available at these parameter values, the minimum energy configuration, with complete capsules, is seldom realized and misformed capsules with spiraling or multishelled configurations dominate, as shown in Fig. 8b. Progression from this state to a completed capsule is extremely slow because breakage of many bonds is required. It would be difficult to assess the importance of configurations such as that shown in Fig. 8b with models that have assumed assembly pathways.

B₅ capsules grow primarily through additions of individual subunits, while combination of clusters is essential for assembly of B₄ and B₃ capsules

The variations of final capsule yields with \(\epsilon_b \) for the capsule designs B₃, B₄, and B₅ (see Fig. 2) are shown in Fig. 9a. Although assembly occurs within different ranges of \(\epsilon_b \) for each design, assembly kinetics within these ranges are similar, as shown in Fig. 9b. In addition, the optimal assembly (\(f_c \approx 0.9 \)) for each design occurs at approximately the same value of \(\eta_b/\epsilon_b \approx 50 \), meaning that the complete capsules all have about the same stability. Variation of assembly with \(C_0 \) and \(\theta_m \) (not shown) is also similar for each design.

Although the capacity to assemble spontaneously is similar for each capsule design, the mechanism of assembly (near optimal assembly) for B₅ is qualitatively different from

FIGURE 8 Snapshots corresponding to unassembled points in Fig. 7, which illustrate the two kinetic traps described in the text. (a) Parameter values corresponding to the \(\bigtriangleup \) symbol in Fig. 7 allowed rapid capsule initiation and growth, which depleted monomers and small intermediates before capsules were completed. (b) At parameter values corresponding to the \(\bigtriangleup \) symbol, strained bonds are incorporated into growing capsules. These snapshots have zoomed in on a representative portion of the system to aid visibility. (Subunit colors indicate the number of bonds: white, 0; red, 1; turquoise, 2; and dark blue, 3 bonds.)

FIGURE 9 Assembly kinetics are similar for each capsule design, B₅, B₄, and B₃. (a) The final capsule yields, \(f_c \), at \(t_{obs} = 6 \times 10^5 \), are shown versus binding energy for each capsule design for \(C_0 = 0.11 \) and \(\theta_m = 0.5 \). (b) The assembly time series are shown for the optimal values of \(\epsilon_b \) from panel a (\(\epsilon_b = 16.0 \) for B₅, 12.7 for B₄, and 10.5 for B₃).
that for B₄ and B₃. We evaluated assembly mechanisms from simulations by tabulating the size, \(n_{\text{be}} \), of the smallest intermediate involved in each binding or unbinding event (see Appendix B). The net contribution to capsid growth by intermediates of size \(n_{\text{be}} \), \(b_{\text{net}}(n_{\text{be}}) \), is shown for each capsid design in Fig. 10. Although \(\sim 33\% \) of subunits assembled as multimers \((n_{\text{be}} > 1)\) for B₃ and B₄ capsids, multimer binding accounted for only 6% of all binding for B₅ capsids. As parameter values are increased beyond optimal assembly conditions, the formation of small intermediates becomes more rapid and multimer binding becomes more important for all capsid designs.

The influence of capsid design on mechanism can be understood by examining assembly pathways that are available if growth occurs only through monomer additions, such as those shown in Fig. 11. Once dimerization occurs for B₅, all subsequent monomers can add in such a way that two or more bonds are formed. For parameter values at which optimal assembly occurs, the formation of a single bond is unfavorable due to entropy loss, but the formation of two or more bonds is favorable. Consequently, the approximate projection of free energy onto cluster size (see Appendix C) shown in Fig. 12 is monotonically decreasing after formation of a dimer. Note that these free energies compare the relative stability of different multimers. There are also free energy barriers not shown that are associated with subunit binding or unbinding, which is required to transition between these states.

For architectures B₃ and B₄, it is not possible to construct an assembly path for which monomers form multiple bonds at all cluster sizes greater than two (see Fig. 11). Therefore, free energy profiles consistent with these architectures, shown in Fig. 12, have numerous free energy barriers and local minima. Steps that climb these barriers, which involve addition of monomers with single bonds, are comparable in rate to the first assembly step, formation of a dimer. Zlotnick and co-workers have shown that intermediates accumulate when a rate-limiting step follows a metastable species (45) or when association energies or concentrations are high and initial assembly steps (nucleation steps) are comparable in rates to later (elongation) steps (17,20). As shown in Fig. 11, however, some intermediates can bind with each other in such a way that single bonds are avoided. Hence, later steps in pathways that include these multimer binding steps are fast compared to initial steps, and intermediates do not accumulate.
for the parameter values considered in Fig. 12. For example, trimers are the most prevalent B_3 intermediate, but the fraction of subunits in trimers is always small compared to that in monomers or complete capsids (see Fig. 13).

To support the hypothesis that multimer binding steps are essential to avoid accumulation of B_3 and B_4 intermediates, we have considered a kinetic model in which only monomers could bind to growing capsids. In this model, only intermediates with minimum-energy, unstrained bonds are allowed. Monomers bind or unbind to intermediates stochastically, with mean binding and unbinding rates that satisfy detailed balance, with free energies for each intermediate calculated as described in Appendix C. The assembly dynamics predicted by this model for B_3 are consistent with those seen in Brownian dynamics simulations, but concentrations of intermediates at local free-energy minima build up for B_4, as well as for the design shown in Fig. 1 B of Endres and Zlotnick (20). Because these intermediates cannot bind with each other, the kinetic equation treatment predicts assembly that is much less efficient than that found by Brownian dynamics simulations. A similar kinetic model was recently used to predict kinetics of assembly of particles into dodecahedrons (23). This work also finds that pathways involving multimer binding are important for some parameter values. These results suggest that it may be important to consider binding of complexes that are larger than the basic assembly unit when hypothesizing assembly mechanisms from experimental data.

For many viruses, the basic assembly units are believed to be small intermediates, such as dimers or trimers. Experimentally observed high concentrations of these species during assembly reactions imply that they form rapidly and are extremely metastable. This feature could be included in our model by designing a new subunit that represents the basic assembly unit, or by choosing higher binding energies for certain bond vectors. In this work, where all maximum binding energies are equal, the importance of multimer binding for B_4 and B_3 capsids is not a result of the interaction between individual subunits. Rather, the collective interactions of many subunits lead to a free energy profile with numerous local minima, which forces assembly to proceed through binding of intermediates. Although binding of trimers and other multimers is essential to B_4 assembly in our simulations, the fraction of subunits that comprise these intermediates is always small compared to the fraction of subunits that are monomers or in completed capsids (see Fig. 13). Hence, the significance of binding of multimers would be difficult to detect by bulk experiments, such as light scattering or size exclusion chromatography, alone. The combination of these techniques, though, with selective deletion of residues through mutation (46) or single molecule experiments may offer insights into the importance of various intermediates in capsid assembly.

Capsids are metastable in infinite dilution and capsid disassembly shows hysteresis

Since even single virions can sometimes infect cells, viral capsids must be metastable in infinite dilution. Model capsids also displayed this feature; for example, significant assembly with $C_0 = 0.008$ did not occur for $e_b < 20.0$ (see Fig. 7), but isolated complete capsids simulated without periodic boundary conditions (to model infinite dilution) were metastable through $t = 6 \times 10^5$ for $e_b \approx 14.0$. This result indicates that the final yield of the capsids at some binding energies will be different for a trajectory that started with mostly complete capsids than for a trajectory that started with random subunit configurations, as shown in Fig. 14. In other words, there would be hysteresis between assembly and disassociation.

Hysteresis arises because, as discussed above, there can be large free energy barriers separating the early stages of assembly, where there are few bonds per subunit, and complete capsids, for which each subunit has n_b bonds. Therefore,

![FIGURE 13 The mass fraction of monomers, trimers, and complete capsids (60 subunits, with $n_b = 4$ bonds each) as a function of time, t, for design B_4, illustrating that intermediate concentrations are always small during successful assembly. The parameters are those given in Fig. 9.](image)

![FIGURE 14 Capsid yields as a function of e_b (or equivalently inverse temperature or inverse denaturant concentration) illustrating hysteresis between association and dissociation of capsids. The final capsid yields, f_c, at $t_{obs} = 6 \times 10^5$, are shown for simulations started with subunits in random configurations (association) and simulations started with the final configuration from the B_3 simulation shown in Fig. 9, which had $f_c = 0.9$ (dissociation). Parameter values were $C_0 = 0.11$ and $\theta_m = 0.5$.](image)
monomers (or complete capsids) can be metastable throughout a finite length trajectory above (or below) ρ_{cc}. Once the first subunit is removed from a metastable complete capsid, neighboring subunits have fewer bonds and further disassembly is rapid. Hysteresis in capsid assembly-disassembly has been seen with experiments and theory by Zlotnick and co-workers (13).

CONCLUSIONS AND OUTLOOK

In this work we examined ensembles of assembly trajectories for models that assemble into capsidlike objects. We demonstrated that computational models can distinguish driving forces and corresponding mechanisms that lead to successful assembly from those that engender dynamic frustration. Therefore, the approach we have outlined might be used to good effect to analyze the dynamics of other assembly models (e.g., (6,26,29,31)) as well as that for other types of assembly models. In addition to the calculations presented herein, there are other ways that ensembles of assembly trajectories can be carefully analyzed. For instance, distributions of capsid formation times could be studied by simulation and potentially estimated with single molecule experiments; comparisons could shed light on assembly mechanisms, such as the mechanisms for B_4 and B_5 assembly illustrated in this work. Trajectories generated by the approach described in this work can be a starting point for performing importance sampling in trajectory space (47–49), which would facilitate statistical analysis of ensembles of assembly pathways.

Rechtsman and co-workers describe an “inverse statistical mechanical-methodology” that allows importance sampling in model space to design potentials that direct assembly into a particular ground state (50). The ability to generate ensembles of dynamical trajectories invites a related strategy, in which one seeks to optimize a function of entire assembly paths, such as capsid assembly times or identities of key intermediates. This approach would involve importance sampling steps in trajectory space, such as shooting moves (51), as well as sampling steps in model space. Understanding model features that lead to specific assembly behavior could guide and interpret experiments that involve mutated capsid proteins.

APPENDIX A

The equations of motion given in Eq. 8 were integrated as follows. Translational displacements are calculated as described in Eq. 7 of Branka and Heyes (36). Bond vector orientations are specified in body-fixed coordinates at the beginning of the simulations. The space-fixed coordinates, $\{b^0(t)\}$, are determined from a rotation matrix, $A(t)$, which is evolved in time using quaternions, which satisfy the equation of motion given in Eq. 3.37 of Allen and Tildesley (35). This equation requires angular velocities, ω, which are determined in an analogous fashion to the translational displacements

$$\omega_i = (2\gamma)^{-1}(\tau_i + \tau^b_i) + \delta \tau_i,$$

where the torques are calculated at two points

$$\tau_i(t) = \tau_i(\{R_i(t), b(t)\})$$

$$\tau^b_i(t) = \tau_i(\{R^b_i(t), b^b(t)\}),$$

with the predictor positions determined as in Branka and Heyes (36).

$$R^b_i = R_i + \delta t(\gamma^{-1}\tau_i + \delta \tau_i).$$

The predictor bond orientations, $\{b^b(t)\}$, are determined from a predictor rotation matrix, which is calculated from Eq. 3.37 of Allen and Tildesley (35), using predictor angular velocities calculated as

$$\omega^b_i = \gamma^{-1}\tau^b_i + \delta \tau_i.$$

This formulation assumes that subunits are hydrodynamically isolated and that rotational and translational sources of friction are not coupled; these assumptions can be relaxed as in Dickinson et al. (52).

APPENDIX B

The contribution of multimer-binding to the final assembly product was calculated from simulations as follows. Multimers were designated by clustering subunits connected by one or more bonds. A binding event occurred when the size of a cluster changed, either through a combination of two clusters (positive binding) or division of a cluster (negative binding). Cluster sizes were output every 10 steps; more than one binding event involving the same cluster within 10 steps was found to be exceptionally rare. The size of a binding event, n_{bc}, was defined by the size of the smallest reactant cluster for positive binding or the smallest product cluster for negative binding. The net forward binding due to events of size n_{bc} is given by

$$h_{net}(n_{bc}) = h_{bc}(b_+ - b_-),$$

where b_+ and b_- are the number of positive and negative binding events of size n_{bc}, respectively.

APPENDIX C

The free energy, Δg, to build a particular capsid configuration, i, from a bath of subunits at concentration C_0, can be determined by analogy to Eq. 14 if the dependence of binding entropy on the number of bonds is neglected,

$$\Delta g_i = \sum_{j} \left[-b_j \hat{c}_0 / 2 \right] - (n_i - 1) T [k_b \ln(\pi \sigma^2 C_0 / 6) + s_b(1)],$$

where j sums over each subunit in the capsid, n_i is the number of subunits in configuration i, and b_j is the number of bonds for subunit j. We project the free energy onto the number of particles in a capsid, n, by summing over configurations containing n subunits

$$G_n = -k_b T \sum_i \delta_{n_i,n} \exp(-\beta \Delta g_i).$$

We performed this work with Monte Carlo simulations in which trial capsid configurations were generated by adding or deleting subunits from current configurations, and then accepted or rejected according to the Metropolis (53) criterion, with the Boltzmann distribution given by Eq. 23. Only configurations consistent with minimum energy bonding were considered; thus, this approach was only applicable for parameters with which misformed capsids do not occur. The average free energy for capsids of size n was efficiently calculated by carrying out umbrella sampling (38) in which a harmonic potential as a function of capsid size was used to bias the number of subunits in the capsid.
The authors are indebted to Tracy Hsiao for assistance in preparing the manuscript, to Sander Pronk for helpful discussions, and to Adam Zlotnick for helpful comments based on an earlier version of the manuscript.

M.F.H. was supported initially by National Science Foundation grant No. CHE0078458, and then by National Institutes of Health fellowship grant No. F32 GM073244-01. D.C. was supported by Department of Energy grant No. CH04CHAO1.

REFERENCES

