<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Affiliation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sean Cray</td>
<td>UC Santa Barbara</td>
<td>Fluctuations in low-tension lipid membranes</td>
</tr>
<tr>
<td>2</td>
<td>Ayelet Benjamini</td>
<td>UC Berkeley</td>
<td>Probing bending rigidity of lipid bilayers using highly parallel Dissipative Particle Dynamics simulations</td>
</tr>
<tr>
<td>3</td>
<td>Aurelia Ball</td>
<td>UC Berkeley</td>
<td>Determining the Structural Ensemble of Intrinsically Disordered Proteins using Computation and Experiment</td>
</tr>
<tr>
<td>4</td>
<td>TJ Lane</td>
<td>Stanford University</td>
<td>Minimalist Models of Protein Folding</td>
</tr>
<tr>
<td>5</td>
<td>Greg Bowman</td>
<td>UC Berkeley</td>
<td>A Protein’s Equilibrium Fluctuations Reveal Novel Druggable Pockets</td>
</tr>
<tr>
<td>6</td>
<td>Milo Lin</td>
<td>UC Berkeley</td>
<td>Protein Folding Timescales</td>
</tr>
<tr>
<td>7</td>
<td>Qian Chen</td>
<td>UC Berkeley</td>
<td>Watching the motion of DNA-Au nanoparticle conjugates by graphene liquid cell EM</td>
</tr>
<tr>
<td>8</td>
<td>John Chodera</td>
<td>Memorial Sloan-Kettering Cancer Ctr</td>
<td>Statistical mechanics in drug discovery: What's the prognosis?</td>
</tr>
<tr>
<td>9</td>
<td>Tuomas Knowles</td>
<td>University of Cambridge</td>
<td>Secondary nucleation in protein filament growth</td>
</tr>
<tr>
<td>10</td>
<td>Chanwoo No</td>
<td>Seoul National University</td>
<td>The dynamic phase transition of the attractive FA model in a trajectory.</td>
</tr>
<tr>
<td>11</td>
<td>Jason Goodpaster</td>
<td>California Institute of Technology</td>
<td>Density functional theory embedding for correlated wavefunctions: Application to transition metal complexes</td>
</tr>
<tr>
<td>12</td>
<td>Nathan Duff</td>
<td>UC Santa Barbara</td>
<td>Additive effects on the interfacial free energy of glycine nuclei</td>
</tr>
<tr>
<td>13</td>
<td>Kateri DuBay</td>
<td>Columbia University</td>
<td>The influence of morphology-directing groups and torsional fluctuations on the morphology and conductance of conjugated polymers</td>
</tr>
<tr>
<td>14</td>
<td>Laura Lupi</td>
<td>University of Utah</td>
<td>Heterogeneous Nucleation of Ice on Graphitic Surfaces: Does Wetting Improve Freezing?</td>
</tr>
<tr>
<td>15</td>
<td>David Sivak</td>
<td>UC San Francisco</td>
<td>Nonequilibrium thermodynamics of molecular machines: optimal control and optimal response</td>
</tr>
<tr>
<td>16</td>
<td>Todd Gingrich</td>
<td>UC Berkeley</td>
<td>Toward Dynamical Design: Path Sampling Methods for Seeking Fast Rates in Large Design Spaces</td>
</tr>
<tr>
<td>17</td>
<td>Dibyendu Mandal</td>
<td>University of Maryland</td>
<td>An exactly solvable model of Maxwell’s demon</td>
</tr>
<tr>
<td>18</td>
<td>Sebastian Deffner</td>
<td>University of Maryland</td>
<td>Information, entropy, and the second law</td>
</tr>
<tr>
<td>Poster Number</td>
<td>Name</td>
<td>Affiliation</td>
<td>Title</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>------------------------------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>19</td>
<td>Kevin Haas</td>
<td>UC Berkeley</td>
<td>Dynamics Information and Trajectory Entropy for Continuous Stochastic Processes</td>
</tr>
<tr>
<td>20</td>
<td>John Haberstroh</td>
<td>UC Berkeley</td>
<td>An exploration of dynamical restrictions on the formation of alignment-specific metastable states during self-assembly</td>
</tr>
<tr>
<td>21</td>
<td>Tom Haxton</td>
<td>Lawrence Berkeley National Lab</td>
<td>Coarse-grained model for peptoid nanostructure assembly</td>
</tr>
<tr>
<td>22</td>
<td>Shachi Katira</td>
<td>UC Berkeley</td>
<td>A grand-canonical reservoir to observe phenomena on biological membranes</td>
</tr>
<tr>
<td>23</td>
<td>Alex Hudson</td>
<td>UC Berkeley</td>
<td>Understanding Urea's Role in Protein Denaturation</td>
</tr>
<tr>
<td>24</td>
<td>Masaharu Isobe</td>
<td>Nagoya Institute of Technology</td>
<td>Generalized bond order parameters to characterize transient crystals</td>
</tr>
<tr>
<td>25</td>
<td>Joohyun Jeon</td>
<td>UC Santa Barbara</td>
<td>Molecular insights into diphenylalanine nanotube assembly: all-atom simulations of oligomerization</td>
</tr>
<tr>
<td>26</td>
<td>Kelsey Schuster</td>
<td>UC Berkeley</td>
<td>Dynamical Heterogeneity in Proteins: Connections to Allostery</td>
</tr>
<tr>
<td>27</td>
<td>Glen Hocky</td>
<td>Columbia University</td>
<td>Correlations between structure and dynamics in model supercooled liquids</td>
</tr>
<tr>
<td>28</td>
<td>Aaron Keys</td>
<td>Lawrence Berkeley National Lab</td>
<td>Calorimetric glass transition explained by hierarchical dynamic facilitation</td>
</tr>
<tr>
<td>29</td>
<td>Pablo Damasceno</td>
<td>University of Michigan</td>
<td>Assembling Complex Structures from Simple Building Blocks</td>
</tr>
<tr>
<td>30</td>
<td>David Limmer</td>
<td>UC Berkeley</td>
<td>Water exchange at the metal electrode is rare and collective</td>
</tr>
<tr>
<td>31</td>
<td>Jeffrey Weber</td>
<td>Stanford University</td>
<td>Emergence of glass-behavior in Markov State Models of protein folding dynamics</td>
</tr>
<tr>
<td>32</td>
<td>Jonathan Landy</td>
<td>UC Santa Barbara</td>
<td>Limiting-law excess sum rule for polyelectrolytes</td>
</tr>
<tr>
<td>33</td>
<td>Laura Armstrong</td>
<td>UC Berkeley</td>
<td>Reverse engineering the caroxysome: Minimal models for the assembly of the polyhedral motifs</td>
</tr>
<tr>
<td>34</td>
<td>Bin Li</td>
<td>UC Berkeley</td>
<td>A Cartesian Classical Second-quantized Many-electron Hamiltonian</td>
</tr>
<tr>
<td>35</td>
<td>Joshua Kretchmer</td>
<td>California Institute of Technology</td>
<td>Path-integral simulations of proton coupled electron transfer</td>
</tr>
<tr>
<td>36</td>
<td>Scott Carmichael</td>
<td>UC Santa Barbara</td>
<td>Cutting corners: 2D assembly of imperfect regular triangles</td>
</tr>
</tbody>
</table>